Value distribution of the Gauss map of improper affine spheres
نویسندگان
چکیده
منابع مشابه
Area Distances of Convex Plane Curves and Improper Affine Spheres
Abstract. The area distance to a convex plane curve is an important concept in computer vision. In this paper we describe a strong link between area distances and improper affine spheres. This link makes possible a better understanding of both theories. The concepts of the theory of affine spheres lead to a new definition of an area distance on the outer part of a convex plane arc. Also, based ...
متن کاملThe Gauss Map for Surfaces: Part 1. the Affine Case
Let M be a connected oriented surface and let G'2 be the Grassmannian of oriented 2-planes in Euclidean (2 + c)-space. E2 + l. Smooth maps t: M -» (7f are studied to determine whether or not they are Gauss maps. Both local and global results are obtained. If í is a Gauss map of an immersion X: M -» E2 + 1, we study the extent to which / uniquely determines X under certain circumstances. Let X: ...
متن کاملValue Distribution Theoretical Properties of the Gauss Map of Pseudo-algebraic Minimal Surfaces
In this thesis, we study value distribution theoretical properties of the Gauss map of pseudo-algebraic minimal surfaces in ndimensional Euclidean space. After reviewing basic facts, we give estimates for the number of exceptional values and the totally ramified value numbers and the corresponding unicity theorems for them.
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
L_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2012
ISSN: 0025-5645
DOI: 10.2969/jmsj/06430799